Skip to search form

RESULTS: 3871 - 3880 of 3914

 

Chapter 11. Regional Climate Projections. page 11-48. 1241

The uncertainty around the projected changes is large 15 however: projections from different CGCMs produce a wide range of values (signal-to-noise ratio 16 ”1) and the changes do not scale well between different SRES scenarios. Also, CGCMs do not 17 resolve well the region’s important mesoscale convection dynamics. The averages for the entire 18 region hide important north-south differences: the north is projected to experience precipitation 19 increase and the south, a decrease.

 

Chapter 2. Changes in Atmospheric Constituents and in Radiative Forcing. page 2-17. 65

Since then 16 concentrations have decreased rapidly, driven by it’s relatively short lifetime of 4.9 years and phase-out 17 under the Protocols, to levels in 2003 less than 40% of the levels when AGAGE measurements began in 18 1978 (Prinn et al., 2005a).

 

Chapter 2. Changes in Atmospheric Constituents and in Radiative Forcing. page 2-44. 92

Myhre and Myhre 36 (2003) examined the implications of varying the albedo of different vegetation types either together or -2-2 37 separately, and found the RF relative to PNV to vary from -0.65 W m to positive 0.47 W m; however, the 38 positive RFs occurred in only a few cases and resulted from large reductions in surface albedo in semi-arid 39 regions on conversion to pasture, so were considered unrealistic by the study’s authors. The single most 40 important factor for the uncertainty in the study by Myhre and Myhre (2003) was found to be the surface 41 albedo for cropland.

 

Chapter 8. Climate Models and their Evaluation. page 8-58. 832

However, variants of the lower- 37 tropospheric stability's measure, that can predict boundary-layer cloud amount as well as the Klein and 38 Hartmann (1993)'s measure, would not necessarily predict an increase in low-level clouds in a warmer 39 climate (Williams et al., 2005; Wood, 2005).

 

Chapter 9. Understanding and Attributing Climate Change. page 9-59. 987

Then, the probability of the different parameter 40 settings (and with it, the different equilibrium sensitivities associated with these parameter settings) is 41 determined from the model’s ability to simulate LGM climate. Annan et al. (2005b) used a low-resolution 42 version of the CCSR/NIES/FRCGC atmospheric GCM coupled to a mixed layer ocean.

 

Chapter 10. Global Climate Projections. page 10-23. 1067

A relatively solid understanding of 45 glacial inception exists wherein a change in seasonal incoming solar radiation (warmer winters and colder 46 summers) associated with changes in the Earth’s axial tilt, longitude of perihelion and the precession of its 47 elliptical orbit around the sun is required (Crucifix and Loutre, 2002; Yoshimori et al., 2002).

 

Chapter 8. Climate Models and their Evaluation. page 8-109. 909

First-Order Draft Chapter 8 IPCC WG1 Fourth Assessment Report 1 2 4 3 2 C) o 1 0 -1 SST Error ( -2 -3 -4 90N6030EQ306090S BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1ECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GIPSL-CM4IPSL-CM4IPSL-CM4IPSL-CM4IPSL-CM4IPSL-CM4IPSL-CM4IPSL-CM4IPSL-CM4 BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0MIROC3.2(hires)MIROC3.2(hires)MIROC3.2(hires)MIROC3.2(hires)MIROC3.2(hires)MIROC3.2(hires)MIROC3.2(hires)MIROC3.2(hires) CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0MIROC3.2(medres)MIROC3.2(medres)MIROC3.2(medres)MIROC3.2(medres)MIROC3.2(medres)MIROC3.2(medres)MIROC3.2(medres) CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1MRI-CGCM2.3.2MRI-CGCM2.3.2MRI-CGCM2.3.2MRI-CGCM2.3.2MRI-CGCM2.3.2MRI-CGCM2.3.2 CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)GISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMPCMPCMPCMPCMPCM CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3GISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHUKMO-HadCM3UKMO-HadCM3UKMO-HadCM3UKMO-HadCM3 CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0GISS-ERGISS-ERGISS-ERGISS-ERGISS-ERGISS-ERGISS-ERGISS-ERGISS-ERGISS-ERGISS-ERUKMO-HadGEM1UKMO-HadGEM1UKMO-HadGEM1 3 ECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMINM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0Mean ModelMean Model 4 5 Figure 8.3.7.

 

Chapter 8. Climate Models and their Evaluation. page 8-120. 894

First-Order Draft Chapter 8 IPCC WG1 Fourth Assessment Report 1 2 a) ) 150 125 100 75 50 Outgoing Clear-Sky SW (W/m^225 90N6030EQ306090S 3 4 5 b) ) 150 125 100 75 50 Outgoing SW Radiation (W/m^225 90N6030EQ306090S BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0MIROC3.2(medres)MIROC3.2(medres)MIROC3.2(medres)MIROC3.2(medres)MIROC3.2(medres)MIROC3.2(medres)MIROC3.2(medres) BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0MRI-CGCM2.3.2MRI-CGCM2.3.2MRI-CGCM2.3.2MRI-CGCM2.3.2MRI-CGCM2.3.2MRI-CGCM2.3.2 CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1PCMPCMPCMPCMPCM CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)GISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMUKMO-HadCM3UKMO-HadCM3UKMO-HadCM3UKMO-HadCM3 CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)GISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHUKMO-HadGEM1UKMO-HadGEM1UKMO-HadGEM1 CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3GISS-ERGISS-ERGISS-ERGISS-ERGISS-ERGISS-ERGISS-ERGISS-ERGISS-ERGISS-ERGISS-ERMean ModelMean Model CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0INM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0Obs (ERBE) ECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMIPSL-CM4IPSL-CM4IPSL-CM4IPSL-CM4IPSL-CM4IPSL-CM4IPSL-CM4IPSL-CM4IPSL-CM4 ECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GMIROC3.2(hires)MIROC3.2(hires)MIROC3.2(hires)MIROC3.2(hires)MIROC3.2(hires)MIROC3.2(hires)MIROC3.2(hires)MIROC3.2(hires) 6 7 8 Figure 8.3.5.

 

Chapter 8. Climate Models and their Evaluation. page 8-122. 896

First-Order Draft Chapter 8 IPCC WG1 Fourth Assessment Report 1 2 3 (a) ) 300 250 200 150 Outgoing LW Radiation (W/m^2100 90N6030EQ306090S 4 5 6 (b) ) 35 30 25 20 15 10 5 Outgoing LW Radiation (W/m^20 90N6030EQ306090S BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1BCC-CM1FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0FGOALS-g1.0MIROC3.2(medres)MIROC3.2(medres)MIROC3.2(medres)MIROC3.2(medres)MIROC3.2(medres)MIROC3.2(medres) BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0BCCR-BCM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0GFDL-CM2.0MRI-CGCM2.3.2MRI-CGCM2.3.2MRI-CGCM2.3.2MRI-CGCM2.3.2MRI-CGCM2.3.2 CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3CCSM3GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1GFDL-CM2.1PCMPCMPCMPCM CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)CGCM3.1(T47)GISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMGISS-AOMUKMO-HadCM3UKMO-HadCM3UKMO-HadCM3 CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)CGCM3.1(T63)GISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHGISS-EHUKMO-HadGEM1UKMO-HadGEM1 CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3CNRM-CM3GISS-ERGISS-ERGISS-ERGISS-ERGISS-ERGISS-ERGISS-ERGISS-ERGISS-ERGISS-ERMean Model CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0CSIRO-Mk3.0INM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0INM-CM3.0 ECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMECHAM5/MPI-OMIPSL-CM4IPSL-CM4IPSL-CM4IPSL-CM4IPSL-CM4IPSL-CM4IPSL-CM4IPSL-CM4 ECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GECHO-GMIROC3.2(hires)MIROC3.2(hires)MIROC3.2(hires)MIROC3.2(hires)MIROC3.2(hires)MIROC3.2(hires)MIROC3.2(hires) 7 8 9 Figure 8.3.7.

 

Chapter 2. Changes in Atmospheric Constituents and in Radiative Forcing. page 2-11. 59

For the RF calculation the above data from Law Dome glacier in the Australian Antarctic Territory 51 are used because they show the highest age resolution (~5 years) of any ice core records in existence and the 52 N-S gradient for CO2 is less than 1 ppm. In addition the high precision data from the cores are connected to 53 direct observational records of atmospheric CO2 from Cape Grim, Tasmania.